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National Science

Foundation Dr. Carl Moore Jr.

Associate Professor
Co!lege _of

Engineering
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Objective

The objective of this project is to enhance robotic education by creating a
device using continuously variable transmissions (CVTs). The device is intended
to utilize computer control and move through various positions to produce

accurate output motion.
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Key Goals

The primary goal of this project is to utilize CVT technology to
present to STEM-curious students:

&~

A

< I
General autonomous The mechanical The use of CVT’s in
robotic technology principle of CVT’s robotics
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Key Goals

Other key design goals are:

A%

Precise, autonomous
two-dimensional
movement

®
o

Customizable, well-
displayed, and engaging
output

Use in multiple
locations
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Proposed Concept

The proposed concept uses a CVT to create shapes traced by
light
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Proposed Concept

Three main systems are employed:

User Interface

FAMU
College of

Engmeerm g




Cade Watson

Structure/Motion System - Update

A 36” long, 3” OD, 0.049” thick Aluminum cylinder had been
selected and ordered previously (along with maintenance free
Bronze bushings to support rotation)

c. e e A i e T el DLre

89965K421 (McMaster)
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Cade Watson

Structure/Motion System - Challenges

General purpose Aluminum tubing is not made to be round
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Cade Watson

Structure/Motion System - Challenges

General purpose Aluminum tubing is not made to be round
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Cade Watson

Structure/Motion System - Challenges

General purpose Aluminum tubing is not made to be round

KEY:
Bronze bushing
Aluminum cylinder
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Cade Watson

Structure/Motion System - Challenges

Solution: Press fit the very round bushings onto the cylinder and
manufacture new bushings out of Delrin for the assembly to rotate in

KEY:
Delrin bushing
Bronze bushing
Aluminum cylinder
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The Updated Structure Consists Of:
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The Updated Structure Consists Of:

Aluminum cylinder with press-fitted Bronze bushings
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The Updated Structure Consists Of:

Aluminum walls with press-fitted Delrin bushings
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The Updated Structure Consists Of:

80/20 Aluminum framing and mounting hardware
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The Updated Structure Consists Of:

Side panels
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The Updated Structure Consists Of:

Carriage rails
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The Updated Structure Consists Of:

Driving motor assembly
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Cade Watson

Driving Motor Assembly Wiring

* The driving motor is controlled by an h-bridge and microcontroller
* A power switch and 2A fuse will be wired in line with the 12V power input to
the h-bridge
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Motion System - Wheel Update

Previously selected nylon wheels were replaced due to
poor frictional characteristics

24WK28 (Grainger) 32-XGFN (AccessCasters)
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Motion System - Carriage Update
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Jacob
Hernandez

Carriage Update - Steering Column

&
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Carriage Update - Chassis
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Carriage Update — Roller Geometry
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System Design Future Work

* Fina
* Fina

* App

ize motor housing design

ize user console design

y the electronics mapping to the physical model

27
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Linkage Design - Prototype 0
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Linkage Design - New Design

Symmetrical

Enhances vertical
motion

Reduces horizontal
displacement
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Linkage Design

L: Link Length
D: End-effector
E: Left wheel

F: Right wheel
EF: Distance between
wheels
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Linkage Design

D
Forward Kinematics
INPUT OUTPUT
E = (AEx, 0) _
FZ(AFX,O) EF =Fx- Ex
— COS_l(L(Z‘F)
T — Ex + Fx
T
Dy = 3Lsin(0) 0
E F
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Kemani Harris

Linkage Design

D
Inverse Kinematics
INPUT OUTPUT
D = (ADx,ADy) D
9 = sin~?! s
3L
EF = Lcos(0)
Ex =Dx — EF
Fx = Dx+ EF
3)
£ F
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Aaron Havener

Control System Structure

Step Input Controller Plant Output
+
R(s) > > H(s) > G(s) > C(s)
| LeftWheel ' yq desired(t) X1(t)
| Right Wheel | X2, desired(t) X2(t)
ot Output Transducer
Sensor Fusion
Sensor 1 i«
Sensor2 [«
Output Transducer FAMU_F SU
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Need For Control

Open-Loop Step Response
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Aaron Havener

Controller Derivation

Control input u(t) = tan
u(t) = Ke(t)

tanf(t) = K(xl,desired(t) — x1())

v=rotan 0(t) = atan(K (1 gesirea(®) — x1(6)))
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Aaron Havener

Closed-Loop Response

Closed-Loop Step Response of Steering Angle Control

-

Steering Angle (normalized)
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Aaron Havener

Linkage Integration

* Now that desired wheel positions are a function of the linkage
end-effector, the desired wheel positions can be used to draw
shapes instead of being arbitrary

e How it works:

»0Once a shape is chosen, the end-effector coordinates are calculated
based on the equation of the shape

» Using the linkage’s geometry, these coordinates are then used to
determine the correlating desired wheel positions

» As the wheels move to these desired positions, the current end-effector
position is updated using forward kinematics

's\ .
g
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Initial Simulation Results

Steering Angle (degrees)
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Wheel Steering Angles Over Time
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Time (s)
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Right Wheel Position (inches)

Left Wheel Position (inches)

Left Wheel: Actual vs Desired
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Aaron Havener

Issues and Proposed Solutions

e Gain was too high and was arbitrarily approximated — needed a
methodological approach
» This caused the wheels to reach the desired positions too quickly

e Resolution affected runtime — needed to be decoupled in the
simulation code

» This caused timing issues, affecting the fluidity of wheel motion
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Aaron Havener

Gain Determination

* Rule of thumb for cobots is to limit motion speed to 1.5 m/s
» For safety, a maximum speed of 1 m/s was chosen. In practice, the
maximum speed reached in the simulation was about 0.26 m/s

 Now that the distance (effective length of the cylinder) and the
velocity are known, we can find the time constant, t

e T can then be used to find the pole, which in turn is used to find
the suitable gain value, K
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Gain Determination
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Simulation Results

Steering Angle (degrees)

25

Wheel Steering Angles Over Time

Left Wheel
Right Wheel

Time (s)
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Left Wheel: Actual vs Desired
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Aaron Havener

Animations

CVT Simulation CVT Simulation CVT Simulation
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Aaron Havener

Controls Future Work

 Test on physical assembly

e Read measured data from motor encoders and infrared distance
sensors as x position values for feedback

* Incorporate user interface

 Hardcode an origin or "setpoint" so errors cannot propagate
between shape drawings
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Aliya Hutley

Automating Motion through Smart Hardware
Steering System

R O U
e o g g
| o352
: S c PIN1 : GND 4—
PC Control & Feedback - % 3. E— PIN2 : VDD #—
i — S | 2 Q— PIN3 : Data +—
=l2:m=um;§u:l W g
Arduino Mega & DYNAMIXEL Shield S @
Computer USB Port (Serial Communication via Header Pins) .9 DYNAMIXEL XL Motors
£ 2
[0 S,
/71&/_0/
€e

Arduino IDE

SMPS 12 V 5A AC Adapter

* Additionally, an OLED LCD Screen

and an Infrared Sensor has been FAMU-ESU
Co!lege _of

Engineering
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Milestone Reached: Motors Operate Independently Aliya Hutley
- | .

* Motors were actuated and tested using the Arduino Mega 2560 and
DYNAMIXEL Shield.

» Tests were performed to ensure it mated properly to the hub, carriage design
and rotated as expected.

* Troubleshot power supply issues using a multimeter to measure current FAMU-FSU
through individual components and isolate circuit inefficiencies. EroieEeing
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Future Works - What To Expect
Next Time?

Motion System: .
y User Interface System: Structure System:

* Simulate all electrical | ) o * Add safeguarding and
* Integration with structure
components at once. & complete assembly

Implement motor and motion systems
encoders and infrared Incorporate OLED and
distance sensor into Laser into assembly

control feedback
Fine tune end effector’s
position based on actual
plotted position.
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Thank You

$2,000

Budget

$1,318.09

Total Spent

)

$681.91

Remaining

48
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Outline

e Cade — Base Design (Cylinder, supporting rotation, wheels)
 Jacob — Spring loaded hub, carriage, motor mount (Updates)

* Desired outcomes w/3d printing, prototyping, advice from
technicians for changes, etc.

e Kemani — Linkage design from old to current, derivation of
kinematics

* Aaron — Controls Update, animations, integration with kinematics

* Aliya — Update on Motor control, Electrical Schematic and
finalized components, and converting code.

51
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Future Works - What To Expect
Next Time?

. : Modeling & Testing &
Kinematics . ) :
Simulation Integration
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Kemani Harris

Proposed Concept

The selected concept from Fall Semester utilizes two-dimensional
motion to create an interactive guessing game using light.
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Motion System - Driving Motor Selection

Driving torque was calculated from frictional forces

0 =0°
0 =90°
| a + bw
Froll _ wheel w:eel wheel (small) Froll _ 0
wheel _
Flige = 0 Fiige = Py (large)

\4

Cylinder

Cylinder

Aliya Hutley
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Motion System - Steering Motor Selection LA

Steering motors are oversized to allow for flexibility in preload

Note: Steering occursin
the clockwise direction

Cylinder

College of
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Motion System - Steering Motor Selection LA

* With a maximum preload of 20 Ibf, T¢ = 0.4 Nm
* Dynamixel servo models Ax-18a and Ax-12a were compared as
candidates (Ax-18a selected for higher torque and speed capabilities)
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Motion System - Driving Motor Selection

An approximation can be made for the Torque at the cylinder:

Teyr = Icy 10y + 2uPsin(6)

Necessary Torque at Cylinder (Nm)
- N
(&) o

o
(3]

Cylinder Torque vs Steering Angle for Various Preloads
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ey
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Kemani Harris

Linkage Design - Prototype 0

r==-========="1
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Kemani Harris

Linkage Design - Prototype 1

1) Equal Link
Length

2) Slider Linkage

3) Middle Coupler
Point
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Kemani Harris

Linkage Design - Prototype 1
Downside h

3 Degrees of
Freedom

N

Stabilization

Waste of Resources
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Aaron Havener

Control System Structure
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Aliya Hutley

Motor Control Updatege s

* Successfully controlled the motors
and recorded their position vs
time.

* Motors were actuated and tested
using DYNAMIXEL Wizard
software to change IDs and
perform basic movements.
Components included:U2D2 via
USB, Power hub board, AX-12A
motor, Wall outlet Power Supply

e “U2D2 is a small size USB
communication converter that

= «— Motor

Layout

DYNAMIXEL
enables to control and operate P Connectors
DYNAMIXEL with PC.”(Robotis) | |
Power ¥ !@@ " ® |
Connectors - TTL/ Rs485 FAMU-FSU
Test Points College of

_ Engineering
63 Graphic layout of DYNAMIXEL U2D2 Power Hub (ROBOTIS)




Aliya Hutley

Motor Control: Challenges

* Motor require more power than what ¢ Solution: Use an external power supply
Arduino microcontrollers can provide.  (12V battery with appropriate adapter)
Arduino is limited to 5V output, while  to provide power directly to the shield
motors require around 11.1V resulting using the Power Connector rather than

in adequate power. Arduino.

* Motors do not actuate when powered
solely by Arduino with the DYNAMIXEL
shield (component that allows motors

to use Arduino).

Power
Connector

FAMU-EFSU
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